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Abstract—Steady thermal boundary-layer flow past a circular cylinder whose axis is placed normal to an
oncoming free stream of an incompressible micropolar fluid has been studied. The solution of the energy
equation inside the boundary-layer is obtained as a power series of the distance measured along the surface
from the front stagnation point on the cylinder. The surface of the circular cylinder is maintained at a
constant temperature and the temperature outside the boundary layer is also kept constant. The
dimensionless temperature distribution and the heat-transfer coefficient have been presented graphically for
various values of the material parameters. A comparison has been made with the corresponding results for
Newtonian fluids. The temperature inside the boundary layer is more, and the heat-transfer coefficient is less,
for micropolar fluids as compared with that for Newtonian fluids.

NOMENCLATURE

Ans B,,C,,D,, E,, functions of §

C,
E’
Jos
g’
9o

Ins

appearing in equations (16e-g);
specific heat at constant pressure;;
Eckert number ;

functions of n appearing in equations
(15a,b);

non-dimensional component of
microrotation;;

non-dimensional component of
microrotation inside the boundary layer;
functions of n appearing in equation
(15¢);

hm kn’jn’ lm my, n,, functions of n

appearing in equations (16a-d);

Js microinertia per unit mass;

K, surface curvature ;

K.,  coefficient of heat conduction;

k,, vortex viscosity coefficient ;

L, radius of the circular cylinder;

Nu, Nusselt number;

N 1s N 1> kv/ Hes

N 2 J / LZ N

Ny, Ny/e?;

Ni v/l

N, Ns/je?;

D, non-dimensional pressure ;

po,»  non-dimensional pressure inside the
boundary layer;

Pr,  Prandtl number;

q, surface heat flux;

R, Reynolds number;
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T, temperature ;

T,, temperature of the oncoming free
stream;

T,, temperature of the wall;

u,v, non-dimensional components of velocity
along x and y directions respectively ;

Uy, vg, Non-dimensional components of velocity
inside the boundary layer;

U,, non-dimensional inviscid flow velocity
on the cylinder;

Uy, velocity of the oncoming free stream;

X, non-dimensional distance measured along
the surface from the front stagnation
point;

A non-dimensional distance measured along
the normal to the surface;

Y, y/e.

Greek symbols

a*, ~ micropolar heat-conduction coefficient ;

a, a*U ,/u,LC, (non-dimensional micropolar
heat-conduction coefficient);

Voo spin gradient viscosity coefficient ;

£, LR

, Y(a;)"? (a, = 2 for a circular cylinder);

0, non-dimensional temperature ;

0o,  non-dimensional temperature inside the
boundary layer;

W, viscosity coefficient ;

0, mass density of the fluid;

¢, angle measured in degrees from the front

stagnation point.
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1. INTRODUCTION

ExPERIMENTS due to Hoyt and Fabula [1], Vogel and Patterson [2], with fluids containing extremely smali
amount of polymeric additives indicate a reduction in skin friction near a rigid body when compared with the
skin friction in the same fluids without additives. This phenomenon cannot be explained on the basis of classical
continuum mechanics. In support of these above experiments Eringen [ 3] has proposed the theory of micropolar
fluids which takes into account the inertial characteristics of the substructure particles which are also allowed to
undergo rotation. This theory can be applied to explain the flow problems of colloidal fluids, liquid erystals, fluids
with additives, animal blood etc.

The theory of thermo-micropolar fluids was introduced by Eringen [ 4] by formulating the full energy equation
of a micropolar fluid. These non-linear equations of motion are too difficult to solve even in comparatively
simpler situations. Peddieson and McNitt [ 5] obtained the boundary-layer equations of a micropolar fluid. The
boundary-layer theory of micropolar fluids as proposed by Peddiesor and McNitt did not consider the thermal
effects.

In Section 2, we have derived the thermal boundary-layer equations for the steady flow of an incompressible
micropolar fluid past a circular cylinder.

We assume Blasius type of power series [6] for velocity, microrotation and temperature inside the boundary
layer. The substitution of these power series in the thermal boundary-layer equations gives rise to a system of
ordinary differential equations. This system of equations along with the corresponding boundary conditions
has been solved in Section 3 for various values of the material parameters entering into the problem. The
numerical values chosen for these micropolar fluid parameters are some of those that have been chosen in [5]. It
may be noted that thermal boundary layer of a micropolar fluid gives rise to an additional parameter o which is
due to heat conduction in micropolar fluids. We assume constant temperature distribution outside the boundary
layer and constant wall temperature.

2. FORMULATION OF THE PROBLEM

We choose an orthogonal curvilinear co-ordinate system (x, y) in which x is measured along the surface of the
cylinder from the front stagnation point and y normal to the surface of the cylinder. The non-dimensional
equations governing the steady flow of a micropolar fluid past a circular cylinder in this co-ordinate system are:

Continuity:
du & .
ox Ty [ +KpE] =0 (1
Momentum:
u au+KU‘ +v0@u_'* 1 @»+(1+N1)" 1 @+52u+_“%1_( ar
(1+Ky)\ox ) 3y (1+Ky)éx R (1+Ky)? éx? " 8y?  (1+Ky)? x
y  dudk . K Cu n v dK K2u /\, og 2
(1 +Ky)3 éx dx T (I+Ky)dy  (1+Ky)* dx  (1+Ky) cy’
u ‘ov ov (1+N 1 v % 2K du
Trrealse togo = TR AR T T TR Ax
(1+Ky)\ox dy Fv R (1+Ky) ¢ ay* (1+Ky)* ox

Keve vy dli+ Jim,, o w AR N, 1 g
T(1+Ky?  (1+Kyy ox dx  (1+Ky)dy (1+Ky)P dx| R (1+Ky)ox

Moment of momentum:

_ 1 dg dg _N; 1 g g K &gy dgdK
N L(HK‘) TR TR AT e e TR0 ey T 1KY éx dx
Ny 1 v du Ku
AT L AL S Y 4)
TR !(1+Ky)(\ &y (1+Ky) gl “!

Energy:

u 00 86 E[, N, ] ou \ P ’01:‘)2 1 /v 3 ﬁuJZ(
LI El M\ k)| 2 D) ] (L ku )
(I+Ky)ox " dy R(1+ ){ [(1+Ky)( ”), ((?y, (1+Ky)(0x Jra |

2NJE 1 1 v Voduli? NsE[ 1 og P [0gJ24

- —_—— 1— =K ——— 4 | e + = N

TR {g 2[7(1+Ky)<6x ”) 3y } R (+Knax | Tlay] |
o 80 og 00 Og [ I Oﬁ L %0 vy dKkae o, K o0 l
+R(1+Ky) PrR | (1 +Ky)? 0x2 " 8y? T (1+Ky)? dx ox  (1+Ky)ay |
The boundary conditions on the surface of the cylinder are

u=v=g=0 0=1 {6

dx dy 0Oy ox
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and for outer boundary conditions we take the free stream values of velocity, microrotation and temperature.

Inthe above equations u and v are the components of velocity along x and y directions respectively and g s the
component of microrotation whose direction of rotation is in the x—y plane. p is the pressure and ¢ is the
temperature. We have non-dimensionalised the co-ordinates by the radius of the circular cylinder L, velocities by
U, (oncoming free stream velocity), microrotation by U_ /L and the pressure by pU2. The dimensionless
temperature 0 is defined as 6 = (T—T,.)/(T,,—T,). T,, and T, denote respectively the constant temperatures of
the wall and the free stream.

The various dimensionless parameters entering into the equations are

pU_L U? u,C

R = 0 , E= © , Pr= vp

He Cp(Tw_Tz) g Kc
N kv IV J N Yo a*Uoo
leﬁ:, N2=P, A’V3=#UL2 and a=#vLCp

where p, is the viscosity coefficient, k, is the vortex viscosity coefficient, y, is the spin gradient viscosity coefficient
and j is the microinertia density. o* and K are the coefficients of heat conduction. C, is the specific heat of the
fluid at constant pressure and p is the mass density. R is the Reynolds number, E is the Eckert number and Pr is
the Prandtl number. The quantities N, N,, N; and « are the micropolar fluid parameters characterising vortex
viscosity, microinertia, spin gradient viscosity and micropolar heat conduction respectively.

We now proceed to carry out the usual boundary-layer approach, as propounded in [ 5], by fixing the following
orders of magnitudes:

Ni=Ny, N, =¢’N,;, Ny=¢’N3, u=u, )

1
v=elo, p=Po, § =_Jo, 0 =0, y=¢Y

where ¢ = 1/(R)Y2. This essentially means that N, u, p and 6 are of order unity.

In addition, following the principle of least degeneracy as suggested by Van Dyke [ 7], we further assume that o
is also of order unity.

Substituting (7) in (1)—(6) and collecting the coefficients of order unity after taking the Prandtl limit of ¢ — 0, x
and Y as fixed, the equations for the thermal boundary-layer flow become

o ®)

%z ’ (10)

Nz(uo%+vogi;)=N3%—N1<%9+2g0)’ (11
uo%+vog—";ﬂ=<1+%)E(%)2+2N1E(g0+%%‘;7°)2

The terms containing E in the energy equation (12) arise due to frictional heating which is often neglected for
incompressible flow.
In view of (10) and Bernoulli’s equation for outer flow, we have,

Opo dUu,
“ox o dx
where U, = U, (x) is the dimensionless inviscid flow velocity on the surface of the cylinder. The equation (9)
therefore becomes

dug dug du, %u, 940

ox +UOB—YT ‘—*dx +(1+N1)—6Y2 +N15? (13)
We thus have the four equations, viz. (8), (11), (12) and (13) for. the four unknowns Uy, Vg, go and 6, in the

boundary layer. The inner and outer boundary conditions are

Uy = UO

Up=0y=¢go=0, fp=10nY=0 (14a)
uo—> Uy, go—0, 6,50 as Y - co. (14b)
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3. METHOD OF SOLUTION

The inviscid flow velocity on the surface of the cylinder is given as U, = 2 sin x which is approximated by the
following polynomial

Ug(X) = dyx+dy X +de X+ a- X" {13a)
where a;, a3, a5 and a, depend only on the shape of the body and are considered to be known. In the case of a
circular cylinder

i 2

7

ap =2 uy= — . ds=

3 and  w; = —

nlto

The polynomial (15a) can be regarded as a reasonably good approximation for the function 2sinx. The
boundary-layer equations break down at the point of separation and so our analysis is valid before the point of
separation is reached.

In view of the relation (15a), we write

4
”()(xa y’) = Z oy - 1-\‘2" ) 1./;’.’n~ 1('])~ (15bl
n=1
1 4
Uo(X,) = — =z 3 (2n—Tlay, 1 x*" fo 1 (n), (15¢)
(“1) n=1
3
(]()(\ 1’] = (ul)l g Z 2n l\'l” 1‘/711'1(’7)s il.:‘d)
\ }7) Z oy - 1\ 1)211*1('1)' Q;‘:‘C]

where § = Y(a,)"?
The functions fs, f>, gs, g7, 3. 05 and 0, occurring in equations (15) are further written as:

Som) = hs) + -2 k<), (16a)
a,das
o dia T
1) = bt + 25 b+ 5 o, (16b)
dayd- ajd-
gsn) =15 (n)+r—‘?r ms (). (16¢)
ay o
g-(n )—l~(i1)+ ma{n) + =5 na(n), {1od)
aydy ajd-
a?
301) = As(n) + - By (), (16e)
3
0s(n) = As(n) +—2 Bs(n) + 4 C5 ), (tof)
a,ds ds
u o3
05(n) = ) +- t:;{ CMH»—(‘{»‘? Dv(n)+;‘j E;(n). (16g)

Substituting (15a~e)in (11)~{13) and using (16a-g), we get the following set of ordinary differential equations
on equating the coefficients of like powers of x:

(END 7 o f+ ] —,f'{l £ NG, =0, (17a)

Natfign =) = Nagi =5 Ui+ 290) (17b)
(LN, 3 4 Nags = 0 (184)
NaT3Uigr— fagh)+ Ui~ igsl] = Vg = -+ 2030 (15b)
(14 N RS+ f e — 6f i+ Sha fi + 6+ N, I5 = 0, {19a)
NATSUils ~hsgh) + gy = F151] = Nl = S (1+215) (19b)

(14 N K+ fLlE—6f ks +5f ks = 30f3° = f3fi =D+ Nyms = 0, {20a)
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NL[5(fims —ksg1) +3(f39: — f395) + K59, — fim5s] = Nsm’s’—f—: (ks +2ms), (20b)

(1+ NS+ fih5 —8fhy + Tf'hy + 8+ Ny Iy = 0, (21a)

No[7(fil —ha91) + (Hrg — f11)] = Nsl’v’—l—;ll—‘(h’7’+217), (21b)

(L+ N Ky + fik5 =811k + Tf1 kg — 8fshs + Sf{ s + 3fshg + 8+ Ny = 0, (22a)
No[7(fims —kag) +5(f3ls —hsg3) + 3(Hsgs — 15 f3) + kag, — fim ] = Nsm%'-];]—: (k+2m;),  (22b)
L+ N7 + f1J7 = 8f177+ U1 = 8f3K5 + 5f3'ks + 3f3ks + Nyny = 0, (23a)

" , o Ny
No[7(fing —jrg1) +5(fsms — g3ks) + 3(k'sgs — fsms)+j29, — fins] = N3n; _a—ll (j7+2n5), (23b)

1

F;()’,’+f10'1 —aay 819, =0, (4)

%A’3’+f1A’3-2f{A3+3f30’. —aa,(g; A5 —2g1 A3+ 3g,07) = 0, (25a)

% i+ fBy—2f{By—aa,(g; By —2¢1 B;) + (1+3N,)Ef;"* + 2N, E(g, + 3/, + N3Ea,g? = 0, (25b)
%A's’+f1f1’s —4f{As+5hsb' —oay (g, A5 — 491 45 +51507) = 0, (262)

1 ’ / ’ ’ ! /
ﬁBlsufle/s‘4ﬂ35+3ﬁ;A3_2f3’A3+5k591 —oay (g, Bs—4g 1 Bs+ 39345~ 29345+ Sms0;) =0, (26b)
l ’ 1’ 7 1 !
EC’5’+f1C’5—4f1’C5+3f3B'3—2f333—aal(g1C5—4gIC5+3g3B3——2g3B3)
+2E(L+3N ) f'fy +4NE(g+ 5093 +3 /3 )+ 2EN3a,g195 =0,  (26¢)

1 7z ’
By A7+ /147 = 6f1 A7 +Ths0, —ay (g1 A7~ 691 45+ 71,01) = 0, (27a)

7)173;'+_;QB; —6f/B1 +3f3 A5 —4f; A5+ Shy Ay — 2hs A5 + Tk, 8,

—aay(g,B7—6g1B;+3g3A5—4g3A5s+Tm,0,+51A5—-2154;) =0,  (27b)
1 4 14 ’ ’
EC9’+f1C'7_6f1/C7+3f335“4f335+5k5A3—2k5A3
+ 7,01 —aa,(g,C5—641C, + 3g3B5s —4g3Bs + 5ms Ay — 2ms A5 + Tn,07) = 0, (27¢)
1 ’ ! / 4
Fr—D’7’+f1D’7 —6f{ D7+ 5hs By —2hsBs —aa, (g, Dy — 64, D, + 515 By — 215 Bs)

+2E(1+3N )/ W+ 4N E(@y +3 /()5 +3H5)+ 2N Eaygi by = 0, (27d)
1
EE;’+f1E’7 —6f{E;+3f;C5—4f;Cs+ 5ks By — 2k’ B,
—aay(g, E7 ~691E; +393C5 — 495Cs + Sms By —2m's B3) + E(1+ 3N ) (2f{'Ks + /%)
+2N,E[2(g,+3/1)ms +3k5) + (g3 + 3/’ ] + N3 Ea, 2gimis + g7) = 0. (27e)
The primes in the above equations denote differentiation with respect to #.

In view of the boundary conditions (14), we obtain the following boundary conditions for the set of equations
(17)-(27):

f10) = fi(0) =g,(0) =0, fi(w)=1, g4(x0)=0, (28)
f0)=f30)=g3(0) =0, fi(oo)=1, gs(0)=0, (29)
hs(0) = hs(0) = 15(0) = 0, hs(0) =1, I5(c0) =0, (30)
ks(0) = k5(0) = m5(0) = 0, k5(o0) =ms(c0) =0, (1)

h7(0) = h5(0) = L(0) = 0, hy(c0) =1, I(00) =0, (32)
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k1(0) = k5(0) = m,(0) = k() = my{c) = 0, (33)
J20) = j5(0) = ny(0) = fy (%) = ny (%) = 0. (34)

1
0,00)=— , A4(0)= B3(0) = A5(0) = B5(0) = C5(0) = A5(0) = B4(0) = C1(0) = D,(0) = E,(0) = 0, (35a)

N

()= Ax(x)

il
=
=
¢

i

As(xy=Bs(0)=Cs(x )= As(x)=B{x)=Colx)=Dq(7 )= E,(x)
={. (35b)

It may be noted that the equations for 8, 43, 45, Bs, A4, B; and (', are {ree from the terms that arise due to
frictional heating. The solutions of B, Cs, D, and E; give the effect of friction on temperature.

The equations (17)-(27) are to be solved with the corresponding boundary conditions (28)-(35). Equation
(17a) is non-linear and the remaining equations (17b)~(27) are linear equations. In each group of the coupled
equations (17)-(23), the first equation is of third order and the latter is of second order. Each of the equations
(24)-(27) is a second order linear differential equation. The relations (28)-(35) furnish boundary conditions for
each group of coupled equations. For the functions determined by the equations (17)--(23), three boundary
conditions are at # =0 and two at # = 2. For the functions determined by the equations (24)-(27), one
boundary condition is prescribed at n = 0 and another at = 0.

We have solved the coupled equations (17)—(27) numerically using Taylor’s series method on CDC 3600
computer with the interval size Ay = 0.05. We illustrate the method for the group of equations (17a)and (17b)for
which the boundary conditions are given by (28). To satisfy the boundary conditions (28), three of which are at
= 0 and the remaining two are given at # = =, we compute the solutions of (17a) and (17b) assuming crude
values of f{"(0) and ¢/(0). These solutions will in general not satisfy the boundary conditions f{(x) = | and
gi(o0) = 0. Now these arbitrary values for f,(0) and ¢ (0) are changed again and again in a systematic manner
till the boundary conditions for large # are satisfied. This is the well known “Shooting Method™” of solving a two
point boundary value problem. The same method is applied to the remaining equations (18)-{27). The
temperature distribution 6, is finally evaluated from (15e).

We have assumed Pr = 1 and the set of values of N,, N,, N; and « are recorded on the figures.

4. RESULTS AND DISCUSSIONS

The velocity and microrotation fields of the flow problem considered here have been shown in detail in [8].
Here in this work we have plotted the temperature field.

In most of the present work we have neglected the frictional heating terms because, as we shall see towards the
end of this article, they are found insignificant at incompressible speeds. The results in all the figures are therefore
obtained without considering the frictional heating terms. It is pertinent to note that if we neglect {rictional
heating terms, there is no direct influence of the micropolar fluid parameters N,, N, and N; on the temperature
field. The influence of these parameters on the temperature field enters through the velocity fields.

The temperature profiles have been plotted in Fig. 1. These curves have been drawn at four different stations,
viz. ¢ = 30° (Fig. 1a), 50° (Fig. 1b), 70° (Fig. 1c) and 105° (Fig. 1d) where ¢ is the angle measured in degrees from
the front stagnation point. We have considered the five sets of values for Ny, N, and N;: (i) Ny = 4.5, N, = 9.0,
N3y =135 ({i)) N, = 13.5, N, = 9.0, Ny = 13.5; (ili) N, = 4.5. N, = 40.5, Ny = 13.5;(iv) N, = 45, N, = 9.0,
Ny =405;(v) N, = N, = N3 = 2 = 0 (Newtonian fluid).

For the first four sets of values of N, N, and N ;, we also examined the effect of variation of o by considering
two values of o, viz.oo = O and o« = L.

The sets (i) and (ii) give the effect of variation of N, when N, and N ; are kept constant. The temperature at a
given #-station increases with the increase of N, for both x = 0and « = 1. This increase is more pronounced as we
move in the down stream direction.

The sets (i) and (iii) give the effect of variation of N, when N and N; are kept constant. Except at ¢ = 1057, at
all other ¢ stations, there is hardly any appreciable effect of N, variation on the temperature profile for 2 = 0. In
case of % = 1 the effect of the increase of N, is to increase the temperature at a given g-station.

The sets (i) and (iv) give the effect of variation of N, when N, and N, are kept constant. There is hardly any
change in the temperature for @ = Oat ¢ = 30°,50° and 70° when N is varied. Fora = Oat ¢ = 105°and o = 1 at
all ¢ stations, the temperature increases with the increase of N ;.

Generally [except for the set (i) at ¢ = 105°] the temperature at a particular station # is less for « = 1 as
compared to a = 0. This difference of temperature becomes more pronounced with the increase of N, as
compared to the increase of N, or N.

All these profiles (Figs. la-d) of the micropolar fluid are compared with the corresponding profiles for the
Newtonian fluid. (N, = N, = N3 = a = 0). The Newtonian temperature profiles have been plotted with dotted
lines. It is clear that at any given station #, the effect of the material parameters is to increase the temperature as
compared to the corresponding flow of a Newtonian fluid.

Now we proceed to examine the heat flux at the wall. The non-dimensional heat-transfer coefficient, called the
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6.0~
(o)

50— i) N,=4.5,N,»9.0, N;=13.5
/(ii) N 135, N29.0 , NyzI13.5

a5 {(iii) N;*4.5 , N,2405, Ny=13.5
(V) N=4.5 , Ny=9.0, Ny=40.5

(V) N0, Ni=0, Ny=0, @=0

nse {Newtonian fluid)

2.0k
(e} o
o 0.25 0.5 0.75 Lo
6, ot ¢ =30°
6.0
(b}
50k (i) N =4.5,N;s=90, N;=13.5

(i} N,;=13.5,Ny9.0, N,=13.5

(i} N,;=4.5 , N,=405, Ny=13.5

lu\n N=4.5 , N 9.0, N;=405
—~ (V) N=0, Np=0, N5=0, a=0

4.0

\\ {Newtonian fiuid)
2.0
[BXs] o
o 0.25 0.5 Q75 1.0
80 at ¢ =50°
6.0

{c})

50

(i) N =45, N;=9.0, Ny=135
~ (i) N,=I35, Ny*9.0, Nyi3.5
a0 /F{nm N,=4.5, N,=405, N;=13.5

((VIN;=45, N,s90, Ns=40.5
(VIN,=0, N=0, Ny=0, a=0

(Newtonian fluid)

2.0

o] Q.25 0.5 S.75 1.0
Byat b = 70°

FiG. i{a). Effect of variation of Ny, N, N; and o on the temperature profiles at ¢ = 30°. (b) Effect of

variation of N, N, N; and o on the temperature profiles at ¢ = 50°. (¢c) Effect of variation of N 1Ny, Nyand

« on the temperature profiles at ¢ = 70°. (d) Effect of variation of N,, N,, N; and « on the temperature
profiles at ¢ = 105°.
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[

(|)N=45 N,=9.0, N5=13.5

6.0
(n)N-135 Ny=9.0, N;=13 5
(ii)N 4.5, N,405,N5=13.5
50 //7(|V)NI=4.5,N2=9‘O,N3=4Ov5
\ / (VIN,*0, N0, N4=0, a=0
40A\ 0" O o (Newtonian fluid)
7
30
20—
O
o] 025 05 075 .G

B, at ¢ - 105°

N=4.5,N,-9.0, Ny= 13 5
N,=13.5,N,79.0, N,=13 5
N,=4.5, N2405,N3=13.5
N;=4 5, N,=9.0,N;=40.5
N, 20, N0, N3=0,a:0

{ Newtonian fluid}

ENUDX)
2022

o 20 40 60 80 00 120

F16. 2. Effect of variation of N, N,. N; and « on the heat-
transfer coefficient parameter eNu(x)/2(2)"2.

Nusselt number, is defined as follows:

Nufx} = A_M-_ﬂ,,_, o {3y \ _ f /00,
u('\"—Kc(ﬂ[;v'_Tx,)_ \(‘ - K‘Y v=o

where g is the heat flux at the wall. Therefore we can write,

eNu(x 30, 3 s
]")lez) = - ("'“0’) == L Y- R S (1)
1 n=_0 1=

The heat-transfer coefficient parameter s‘Nu(\')/Z(2)“2 for the same four sets of values {as for temperature
profiles) of N, N, and N have been plotted in Fig. 2. For each of these sets, heat transfer at the wall is again

plotted for two different values of o, viz. 2 = Oand « = L.
The heat-transfer coefficient is found to decrease with the increase of N for & = 0 and « = 1. With the increase
When N, is increased the heat-

AF AN tha hant_tn [ 6~ H — —
of N,, the heat-transfer coefficient increases for « = 0 and decreases for & = 1.

transfer coefficient decreases for x = 1 and it has hardly any change for » = 0.
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Generally (except for N, = 13.5, N, = 9.0, N5 = 13.5 after ¢ = 98°), the heat-transfer coefficient is more for o
= 1 as compared to o = 0. This difference becomes less pronounced as we move away from the stagnation point.
The heat-transfer coefficient parameter for Newtonian fluid is plotted with the dotted lines and it is clear that the
effect of micropolar fluid parameters is to decrease the heat-transfer coefficient.

Comparing figures for the heat-transfer coefficient (Fig. 2) and the temperature fields (Figs. 1a-d), we note that
the heat-transfer coefficient for Newtonian fluid is more and the temperature is less when compared with that for
micropolar fluids. This can be explained as follows. The temperature 6,(x, ) at any point (x, ) inside the
boundary layer at a small distance # from the wall can be approximately written as

Bo(x, 1) = Bo(x, 0)+ B (x, O)y = 1 —(—2—;%Nu(x)n-
The difference between the temperatures of a Newtonian fluid and a micropolar fluid at the same point inside the
boundary layer at a distance 5 from the wall can be written as

[G(x’ ’7)] Newtonian — [O(X, ”)]nﬁcropolar = {[Nu(x)]micropolar - [Nu(x)]Newtonian} ‘(‘2%2“ y.

Table 1. Temperature distribution 8, for Ny =4.5, N, =9.0,N; =13.5,a =0, Pr =1 and E = 0.0 at ¢ = 30°, 70° and
105° for the two cases—neglecting frictional heating and including frictional heating

¢ =30° ¢ =70° ¢ = 105°
B 0o 0y 8, 0o 8,
n (Neglecting (Including (Neglecting (Including (Neglecting (Including
frictional frictional frictional frictional frictional frictional
heating) heating) heating) heating) heating) heating)
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 0.7801 0.7826 0.8261 0.8333 0.9053 09119
10 0.5668 0.5696 0.6543 0.6640 0.8092 0.8120
1.5 0.3743 0.3765 0.4003 0.5000 0.7118 0.7192
20 0.2193 0.2207 0.3427 0.3509 0.6162 0.6321
25 0.1114 0.1122 0.2200 0.2259 0.5178 0.5373
30 0.0481 0.0484 0.1269 0.1306 0.4007 0.4175
35 0.0173 0.0175 0.0639 0.0659 0.2650 0.2759
40 0.0052 0.0052 0.0272 0.0281 0.1407 0.1465
45 0.0012 0.0013 0.0094 0.0098 0.0579 0.0605
50 0.0002 0.0003 0.0026 0.0027 0.0181 0.0192
55 0.0000 0.0000 0.0006 0.0006 0.0043 0.0047
6.0 0.0001 0.0001 0.0008 0.0010
6.5 0.0000 0.0000 0.0001 0.0002
7.0 0.0000 0.0001

Table 2. Temperature distribution 8, for N, =4.5, N, =9.0, N; =13.5,a =1, Pr =1 and E = 0.01 at ¢ = 30°, 70° and
105° for the two cases—neglecting frictional heating and including frictional heating

¢ =30° ¢ =170° ¢ = 105°
[/ 0, B 0, 8, 0,
n (Neglecting (Including (Neglecting (Including (Neglecting (Including
frictional frictional frictional frictional frictional frictional
heating) heating) heating) heating) heating) heating)
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 0.7680 0.7704 0.8170 0.8241 0.9026 0.9092
1.0 0.5475 0.5503 0.6384 0.6480 0.8030 0.8062
1.5 0.3548 0.3570 04713 0.4809 0.7013 0.7089
20 0.2043 0.2057 0.3244 0.3325 0.5998 0.6154
2.5 0.1023 0.1031 0.2052 02110 0.4944 0.5137
3.0 0.0437 0.0441 0.1168 0.1204 0.3742 0.3908
35 0.0157 0.0158 0.0582 0.0601 0.2429 0.2538
40 0.0046 0.0047 0.0245 0.0254 0.1275 0.1332
45 0.0011 0.0011 0.0085 0.0088 0.0521 0.0546
5.0 0.0002 0.0002 0.0023 0.0025 0.0163 0.0173
5.5 0.0000 0.0000 0.0005 0.0005 0.0038 0.0042
6.0 0.0001 0.0001 0.0007 0.0009
6.5 0.0000 0.0000 0.0001 0.0002

70 0.0000 0.0001
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Since [ Nu(x)]newtonian S greater than [ Nu(x)]micropolar> therefore, the temperature of a micropolar fluid is more
than the temperature of a Newtonian fluid in view of the above relation.

Towards the end of the present work, we have also computed the temperature distribution 6, and heat-transfer
coefficient parameter eNu(x)/2(2}''? including the frictional heating terms. The magnitude of the Eckert number
E is taken as 0.01 and the case we considered is for N| = 4.5, N, = 9.0, N5 = 13.5. These values have been
recorded in Table 1 {for « = 0) and in Table 2 (for % = 1) for temperature fields at ¢ = 30", 70 and 105° and in
Table 3 (for 2 = 0 and % = 1) for heat-transfer coefficient. It is clear from these tables that the inclusion of

Table 3. Heat-transfer coefficient parameter eNu(x);2(2)' * for N, = 4.5, N, = 9.0, N, =135,
Pr=1and E = 0.01 (for x = 0 and x = 1) for the two cases---neglecting frictional heating and
including frictional heating

=0 x=1
aNu(x)2(2) 2 eNu(x)/2(2)42 eNu(x)y2(2)' 2 sN(x)2(2) 7

1) (Neglecting (Including (Neglecting {Including

frictional frictional frictional frictional

heating) heating) heating) heating)
0 0.2305 0.2305 0.2445 0.2445
10 0.2293 0.2288 0.2433 0.2428
20 0.2260 0.2241 0.2396 0.2378
30 0.2204 0.2164 02336 0.2297
40 02124 0.2063 0.2251 0.2190
50 0.2022 0.1940 02140 0.2059
60 0.1894 0.1797 0.2006 0.1906
70 0.1740 0.1633 0.1836 0.1730
80 0.1557 0.1440 0.1638 0.1522
90 0.1342 0.1201 0.1404 0.1265

100 0.1088

0.0888 0.1128

0.0931

the frictional heating terms has no appreciable influence and thereby supports the assumption of negligible
frictional heating in the present work.

To sum up, we can therefore, state that the effect of variation of N, is more pronounced as compared to the
variation of either N, or N;. Generally [except for the set (i) of values of N, N, and N, ], the temperature is less
and the heat-transfer coefficient is more for « = | as compared to x = 0. It is seen that the effect of micropolar
fluid parameters is to increase the temperature inside the boundary layer and to decrease the heat-transfer
coefficient as compared to Newtonian fluid.
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COUCHE LIMITE THERMIQUE D’UN FLUIDE MICROPOLAIRE
SUR UN CYLINDRE CIRCULAIRE

Reésume—-On étudie 1a couche limite stationnaire sur un cylindre circulaire dont 'axe est normal a un
écoulement de fluide micropolaire et incompressible. On obtient la solution de I'équation d’énergie dans la
couche limite sous la forme d’un développement en série de la distance curviligne au point d’arrét amont. La
surface du cylindre est maintenue a température constante de méme que Pécoulement libre. La distribution
de température adimansionnelle et le coefficient de transfert de chaleur sont présentés graphiquement pour
plusieurs valeurs des paramétres. On les compare aux résultats correspondants pour les fluides Newtoniens.
Pour les fluides micropolaires, la température dans la couche limite est plus grande que pour les fluides
Newtoniens alors que le coefficient de transfert est plus faible.
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DIE THERMISCHE GRENZSCHICHT EINES MIKROPOLAREN FLUIDS
AM KREISZYLINDER

Zusammenfassung—Untersucht wurde die stationidre thermische Grenzschichtstromung hinter einem
Kreiszylinder, dessen Achse senkrecht in der freien Zustr6mung eines inkompressiblen, mikropolaren Fluids
steht. Die Lésung der Energiegleichung, angewandt auf die Grenzschicht, erhilt man als Exponentialfunk-
tion der Umstromungslinge entlang der Zylinderoberfliche vom Staupunkt aus. Sowohl die Oberflichen-
temperatur des Kreiszylinders als auch die Temperatur auBlerhalb der Grenzschicht wurden als konstant
angenommen. Die dimensionslose Temperaturverteilung und der Wirmeiibergangskoeffizient wurden
grafisch aufgetragen fiir verschiedene Werte der Materialparameter. Die Ergebnisse werden verglichen mit
entsprechenden Werten fiir Newton’sche Fliissigkeiten. Es zeigt sich, daB bei mikropolaren Substanzen die
Grenzschicht-TemperaturgréBen, der Wirmeiibergangskoeffizient kleiner ist als bei Newton’schen Fliissig-
keiten.

HUCCIEOOBAHHUE MOrPAHUYHOIO CJI0OSA MUKPOIOJJAPHON XUAKOCTHU
HA TIOBEPXHOCTH KPYIJIOI'O UMJIUHIPA

Annoranns — B pabote uccnenyercs cTauMOHapHbIA TeNI00OMEH B NOTPAHUYHOM CJIOE Ha KPYTIJIOM
UKJIMHApPE, OCh KOTOPOro NepneHOMKynspHa HaberarouleMy CBOGOOHOMY MOTOKY HECKMMAeMO
MHKDONOSIAPHOMA KNAKOCTH. PellieHne ypaBHEHHs HEPrMH NOJYYEHO B BHIE CTEMEHHLIX PAAOB IO
KOOpPJKHATE, K3IMEPEHHOI 110 MOBEPXHOCTH OT JI0GOBOIH KPUTHYECKOH TOYKH UMIHHAPA. TeMnepaTypbl
KPYIJIOTo LHWIHHApA M Haberarowero NoToka CYUTAOTCA NOCTOAHHbIME, [ paduyecky npeacTaBaeHo
pacnpeneneHue Oe3pa3MepHOil TemriepaTypbl H KodpdHUHMEHT2 TemmooOMeHa AMS Pa3/IMuHbIX
3HaYeHH NMapaMeTpoB cpelbl. BblIO NMPOBEAEHO COMOCTABJIEHHE ¢ COOTBETCTBYIOLIMMH AAHHBIMU
IS HBIOTOHOBCKHX XHIKOCTEH. ¥ MHKPOMOJAPHBIX XHUAKOCTEH, [0 CPABHEHHIO C HbIOTOHOBCKUMH,
TeMnepaTypa BHYTpPH NOTPaHHYHOrO Cos Gonblue, a KO3bPHULHEHT Tem1o00MeHa MEHbLIE.
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