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Abstract-Steady thermal boundary-layer flow past a circular cylinder whose axis is placed normal to an 
oncoming free stream of an incompressible micropolar fluid has been studied. The solution of the energy 
equation inside the boundary-layer is obtained as a power series of the distance measured along the surface 
from the front stagnation point on the cylinder. The surface of the circular cylinder is maintained at a 
constant temperature and the temperature outside the boundary layer is also kept constant. The 
dimensionless temperature distribution and the heat-transfer coefficient have been presented graphically for 
various values of the material parameters. A comparison has been made with the corresponding results for 
Newtonian fluids. The temperature inside the boundary layer is more, and the heat-transfer coefficient is less, 

for micropolar fluids as compared with that for Newtonian fluids. 

NOMENCLATURE 

A,, B,, C,, D,, E,, functions of n 
appearing in equations (16e-g); 

c,, specific heat at constant pressure ; 

: 

Eckert number ; 
functions of n appearing in equations 

Wa,b); 

93 non-dimensional component of 
microrotation; 

903 non-dimensional component of 
microrotation inside the boundary layer 

S”, functions of n appearing in equation 

(15c); 
h,, k,, j,, I,,, m,, n,, functions of q 

appearing in equations (16a-d) ; 
J. microinertia per unit mass ; 
K surface curvature ; 

KC, coefficient of heat conduction ; 
k 

L:’ 

vortex viscosity coefficient ; 
radius of the circular cylinder ; 

NM, Nusselt number ; 
NI,NI, k,lp,; 
N2, ilL2 ; 
N2, N,j&2; 

NJ, Y”l&L2; 
N,, N,/tz2; 

Pa non-dimensional pressure; 

PO? non-dimensional pressure inside the 
boundary layer; 

Pr, Prandtl number ; 
49 surface heat flux ; 
R, Reynolds number; 

T temperature ; 
T (up temperature of the oncoming free 

stream ; 
T WI temperature of the wall; 

4 0, non-dimensional components of velocity 

along x and Y directions respectively ; 
uo, vo, non-dimensional components of velocity 

inside the boundary layer ; 

uo> non-dimensional inviscid flow velocity 

on the cylinder ; 
u mt velocity of the oncoming free stream ; 
X, non-dimensional distance measured along 

the surface from the front stagnation 
point ; 

Y, non-dimensional distance measured along 
the normal to the surface; 

y, Yl&. 

Greek symbols 

a*, micropolar heat-conduction coefficient ; 

a, a*U,/p,LC, (non-dimensional micropolar 
heat-conduction coefficient); 

YW spin gradient viscosity coefficient ; 
&, 1/(R)“2 ; 

% Y(cI,)“~ (al = 2 for a circular cylinder); 

0, non-dimensional temperature ; 

e 0, non-dimensional temperature inside the 
boundary layer; 

P”? viscosity coefficient ; 
P> mass density of the fluid; 

49 angle measured in degrees from the front 
stagnation point. 
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1. INTRODUCTION 

EXPERIMENTS due to Hoyt and Fabula [l], Vogel and Patterson 121, with fluids containing extremely small 
amount of polymeric additives indicate a reduction in skin friction near a rigid body when compared with the 
skin friction in the same fluids without additives. This phenomenon cannot be explained on the basis of classical 
continuum mechanics. In support of these above experiments Eringen [3] has proposed the theory ofmicropolar 

fluids which takes into account the inertial characteristics of the substructure particles which are also allowed to 
undergo rotation. This theory can be applied to explain the flow problems of colloidal fluids. liquid crystals, Auids 

with additives, animal blood etc. 

The theory of thermo-micropolar fluids was introduced by Eringen [4] by formulating the full energy equation 
of a micropolar fluid. These non-linear equations of motion are too difficult to solve even in comparatively 

simpler situations. Peddieson and McNitt [S] obtained the boundary-layer equations of a micropolar fluid. The 
boundary-layer theory of micropolar fluids as proposed by Peddieson and McNitt did not consider the thermal 
effects. 

In Section 2, we have derived the thermal boundary-layer equations for the steady flow of an incompressible 
micropolar fluid past a circular cylinder. 

We assume Blasius type of power series [6] for velocity, microrotation and temperature inside the boundary 

layer. The substitution of these power series in the thermal boundary-layer equations gives rise to a system of 
ordinary differential equations. This system of equations along with the corresponding boundary conditions 
has been solved in Section 3 for various values of the material parameters entering into the problem. The 

numerical values chosen for these micropolar fluid parameters are some of those that have been chosen in [S]. It 

may be noted that thermal boundary layer of a micropolar fluid gives rise to an additional parameter CI which is 

due to heat conduction in micropolar fluids. We assume constant temperature distribution outside the boundary 
layer and constant wall temperature. 

2. FORMULATION OF THE PROBLEM 

We choose an orthogonal curvilinear co-ordinate system (x, y) in which x is measured along the surface of the 
cylinder from the front stagnation point and 4’ normal to the surface of the cylinder. The non-dimensional 
equations governing the steady flow of a micropolar fluid past a circular cylinder in this co-ordinate system are: 

Continuity: 

Momentum: 

!V, ag 
f--,, 

R cy 

K21 .I‘ ?v dK __~ ~_ + .K_._ ‘5 _ dK 
-Gv)‘-___ (1 + KJ)~ (1.x dx (l+Ky)ciy (l+‘&)’ dx 

Moment of momentum : 

Energy: 

r 

I 

(:o cig a0 dg 

J I 

o3*0 c;2t1 80 
+ _____ +A_ _-‘_Y__+__ ___L_dK~+++K__ ._~ 

R(l + KY) 8X 8~’ dy 8X PrR (l+Ky)’ i3x2 8~’ (~+KY)~ dx i;x (l+Ky)dy I 

The boundary conditions on the surface of the cylinder are 

u=u=g=o, O=l 

(2) 

(31 

(5) 

(61 
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and for outer boundary conditions we take the free stream values of velocity, microrotation and temperature. 
In the above equations u and v are the components of velocity along x and y directions respectively and g is the 

component of microrotation whose direction of rotation is in the x-y plane. p is the pressure and 0 is the 
temperature. We have non-dimensionalised the co-ordinates by the radius of the circular cylinder L, velocities by 
U, (oncoming free stream velocity), microrotation by U,/L and the pressure by pU2. The dimensionless 
temperature 0 is defined as 0 = (T- T,)/( T, - T,). T, and T, denote respectively the constant temperatures of 
the wall and the free stream. 

The various dimensionless parameters entering into the equations are 

where p0 is the viscosity coefficient, k, is the vortex viscosity coefficient, lfG is the spin gradient viscosity coefficient 
and j is the microinertia density. CI* and K, are the coefficients of heat conduction. C, is the specific heat of the 
fluid at constant pressure and p is the mass density. R is the Reynolds number, E is the Eckert number and Pr is 
the Prandtl number. The quantities Nr, N2, m3 and tl are the micropolar fluid parameters characterising vortex 
viscosity, microinertia, spin gradient viscosity and micropolar heat conduction respectively. 

We now proceed to carry out the usual boundary-layer approach, as propounded in [5], by fixing the following 
orders of magnitudes : 

N, = N,, m, = s=N,, n3 = E’N,, u = u0 
1 

(7) 
v = E&J, p = po, g = ;go, 0 = 00, y = EY 

where E = l/(R)‘/*. This essentially means that Nr, u, p and 0 are of order unity. 
In addition, following the principle of least degeneracy as suggested by Van Dyke [7], we further assume that LX 

is also of order unity. 
Substituting (7) in (l)-(6) and collecting the coefficients of order unity after taking the Prandtl limit of E + 0, x 

and Y as fixed, the equations for the thermal boundary-layer flow become 

~+$o, 

uO$+vo~= -$J+(l+N,)~+~,fjk, 
aPo o 
ay= > 

(11) 

The terms containing E in the energy equation (12) arise due to frictional heating which is often neglected for 
incompressible flow. 

In view of (10) and Bernoulli’s equation for outer flow, we have, 

-$J= &d$ 

where U, = U,(x) is the dimensionless inviscid flow velocity on the surface of the cylinder. The equation (9) 
therefore becomes 

(13) 

We thus have the four equations, viz. (8), (ll), (12) and (13) for the four unknowns u,,, vO, go and &, in the 
boundary layer. The inner and outer boundary conditions are 

ug = vg = go = 0, 19, = 1 on Y = 0 (14a) 

a0 -+ u,, 90 -+ 0, 0,-tO as Y-+co. (l4b) 
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3. METHOD OF SOLUTION 

The inviscid flow velocity on the surface of the cylinder is given as C’,, = Z sin z which is approximated by the 

following polynomial 

C,(.V) = <I, V + L/./ m+ (liI + LI: \- I IF;11 

where a,, ~1~. ~1~ and u7 depend only on the shape of the body and are considered to be known. In the case of a 

circular cylinder 

7 7 7 
u, = ?. (13 = -- - . 

I? 
0s -: l-5 and (,7’~ - 

17 

The polynomial (15a) can be regarded as a reasonably good approximation for the function ‘sin X. The 

boundary-layer equations break down at the point of separation and so our analysis is valid before the point <)I’ 

separation is reached. 
In view of the relation (15a), we write 

U<~(.X, ?/) = i UZ,, r.?” ‘/i,E ,(a). 
,, = 1 

where q = Y(u,)’ ‘. 
The functions,fT,f,, gs, g,, 0,. 0, and 0, occurring in equations (15) are further written as: 

Substituting (15a-e) in (1 l)-( 13) and using (16a-g), we get the following set of ordinary differential equations 
on equating the coefficients of like powers of X: 

(I+N,)~;“+f,./;‘+1-f;‘~+N,g’, =O, i I ‘a) 

N2(f;lY, -1;s;) = N,d- ;I (f;‘+%,). (17b) 
1 

(1 tN,)j~“+1;1;‘-4f;/~+!f;“fl+4+NIs:7 =Q i l&i) 

N2[3(.f;Y.1-f38;)+f.l;gl-flY;)l = ,\‘y;-;y;,+2q,l. (IMb) 

(1 +N,)h;“+f;h~-6f;‘12’,+511,~;‘+6+N,E:, = 0, /I%~) 

N,[5(,1;‘I,-h,g;)+(h;g,-f;[I)] = NJ;-!+:+21,). (lc)b) 

(l+N,)kI;‘+f;k’;-~f;‘k;+!f;“k,-3(,/;’-~.l,f;’-l)+N,n1; = 0. 120a) 
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N,[5(f;m,-ksg;)+3(f;g,-f,g;)+k;g,-f,m’,l = w,m~-~(k;‘+2ms), (2Ob) 

(l+N,)h;“+f,h;‘-8f;h;+7f;‘h,+8+N,1; = 0, (21a) 

N*C7(f;/7-h7g;)+(h;gl_fil;)l = NJ-++2M, (2tb) 

(l+N,)k;“+f,k;‘-8f;k;+7f;‘k,-8f;h;+5f;’h,+3f,h;‘+8+N,m; = 0, (22a) 

N,C7(f;m,-k,g;)+5(f;I,-h,g;)+3(h;g,-l;f,)+k;g,-f,m;l = NA-~(&‘+2+), (22b) 

(1+N,)j;“+f,j;‘-8f;j;+7f;‘j,-8f;k;+5f;”k5+3f,k;‘+N,12; =O, (23a) 

N,[7(f;n,-j7g;)+5(f;m5-g;k5)+3(k;g3-fjm;)+j;gl-fin;l = NA’-?(j;‘+2n,). (23b) 

&g;+fi8;-lo,8;g, = 0, (24) 

~A;+f;A;-2f;A1+3~~~-~~~(g~~~-2g;A,+3g~~~) = 0, (25a) 

~B;‘+f;B;-2f;B,-la,(glB;-2g;B,)+(1+:N,)Ef;’2+2N,E(g,+:f;‘)’+N,En,g;? = 0, (25b) 

~a;+~~a;-4f;‘A,+5h,0;-au~(g,A;-4g’~A,+51,LI;)=0, (26a) 

~~~+fis;-4f~B,+?r,A~-2f;A,t5k,B;-aa,(g,B;-4g;B,+3g,A;-2SA,+Sm,B;) = 0, (26b) 

~c;+lic;-4f;C,+31,B;-2f;B,-aa,(g,C;-4g;C,+3g,B;-2g;B,) 

+2E(l+~N&“&‘+4N,E(g,++f;‘)(g3++~;’)+2EN,a,g;g; = 0, (26~) 

~A;+~~~~-6~~~,+7~,~~-aa,(g,A:-6g;A,+7/,8;) =O, (27a) 

&B$;+,f,B;-6f;B,+?f,A;-4f;A,+5h,A;-2h;A,+7k,B; 

-cq(g,B’,-6g;B,+3g,A;-4g$A,+7m,B;+51,A$-21;A,) =O, (27b) 

+‘+f,c;sJ;c,+3f~~~-4f;B~+5k,A;--?k;A, 

+7j,~;-ual(g,C;-6g;C,+3g,B;-4g;B,+5m,A;-2m;A,+7n,0;) = 0, (27~) 

~D;+.f,D;-6f;‘D,+5h,B;-2h;B~-aal(g,D;-6g;D,+51,B;-21;8~) 

+2E(l+~N,)f;‘h;‘+4N,E(g,+ff;‘)(l,+~h;’)+2N,EaIg;I; = 0, (27d) 

;E”+f&-6f;E,+3/IC;-4f;‘C,+Sk&2k;B, 

-“al(g,E;-6g;E,+3g,C;-4g;C,+5m,B;-2m;B,)+E(1+$N,)(2f;‘k;‘+f;’2) 

+2N1E[2(g1+3fF)(m~+&)+(g~+ffi’)~] +N,Ea,(2g;m;+g;‘) = 0. (27e) 

The primes in the above equations denote differentiation with respect to q. 

In view of the boundary conditions (14), we obtain the following boundary conditions for the set of equations 
(17)-(27): 

fi(O) = f;(o) = Sl(O) = 9 f{(w) = 1, g,(Co) = 0, (28) 

f3P) = f;(o) = 93(O) = 9 f;(w) = 1, gs(co) = 0, (29) 

h,(O) = h;(O) = 1,(O) = 0, h;(oo) = I, /5(co) = o, (30) 

k,(o) = k;(o) = m,(O) = 0, k;(w) = m,(a) = 0, (31) 

h,(o)=MO)=Z~(O)=O, h;(oo)=l, /,(co)=o, (32) 
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k,(O) = k;(O) = m,(O) = k;(x) = /q(x) = 0. 

j:(O) = j;(O) = u,(O) = j;(x) = u7(x) = 0. 

(33) 

134) 

O,(O) = -’ 
11, ’ 

‘43(O) = B3(0) = A,(O) = B,(O) = C’,(O) = A,(O) c B,(O) z C,(C)) = D,(O) =~ I:‘,(()) = (J (&, 

It may be noted that the equations for H,, A,, A,, B,, A.,, B, and C‘: are free from the terms that arise due to 

frictional heating. The solutions of B,, Cgr D, and E, give the effect of friction on temperature. 
The equations (I 7))(27) are to be solved with the corresponding boundary conditions (2X)-(35). Equation 

(I 7a) is non-linear and the remaining equations (17b)-(27) are linear equations. In each group of the coupled 

equations (17))(23) the first equation is of third order and the latter is of second order. Each of the equations 
(24)--(27) is a second order linear differential equation. The relations (28) -(35) furnish boundary conditions for 
each group of coupled equations. For the functions determined by the equations (17) (23), three boundary 

conditions are at ~1 = 0 and two at y = x8. For the functions determined by the equations (24). (27). one 
boundary condition is prescribed at q = 0 and another at q = 0. 

We have solved the coupled equations (17))(27) numerically using Taylor’s series method on CDC3600 
computer with the interval size Aq = 0.05. We illustrate the method for the group ofequations (I 7a) and (17b) for 
which the boundary conditions are given by (2X). To satisfy the boundary conditions (28). three of which are at 11 

= 0 and the remaining two are given at ‘1 = I. we compute the solutions of (17a) and (I 7b) assuming crude 
values of .f;“(O) and g’,(O). These solutions will in general not satisfy the boundary conditions ,j,‘( Y-) = I and 

9, (‘% ) = 0. Now these arbitrary values for j;‘(O) and g’,(O) are changed again and again in a systematic manner 
till the boundary conditions for large q are satisfied. This is the well known “Shooting Method” of solving a two 

point boundary value problem. The same method is applied to the remaining equations (18) (27). The 
temperature distribution (I, is finally evaluated from (1 Se). 

We have assumed Pr = 1 and the set of values of N,, N,, N, and Y are recorded on the figures. 

4. RESULTS AND DISCUSSIONS 

The velocity and microrotation fields of the flow problem considered here have been shown in detail in [X], 
Here in this work we have plotted the temperature field. 

In most of the present work we have neglected the frictional heating terms because, as we shall see towards the 

end of this article, they are found insignificant at incompressible speeds. The results in all the figures are therefore 
obtained without considering the frictional heating terms. It is pertinent to note that if we neglect frictional 
heating terms, there is no direct influence of the micropolar fluid parameters N,, N, and N, on the temperature 

field. The influence of these parameters on the temperature field enters through the velocity fields. 
The temperature profiles have been plotted in Fig. 1. These curves have been drawn at four different stations, 

viz. 4 = 30” (Fig. la), 50” (Fig. 1 b), 70” (Fig. lc) and 105” (Fig. Id) where rj is the angle measured in degrees from 
the front stagnation point. We have considered the five sets ofvalues for N,, N, and N,: (i) NI = 4.5, hi2 = 9.0, 
N, = 13.5: (ii) N, = 13.5, N, = 9.0, N, = 13.5; (iii) N, = 4.5. N, = 40.5, N, = 13.5: (iv!) N, = 4.5, NZ = 9.0. 
N, = 40.5: (v) N I = N2 = N, = 3 = 0 (Newtonian Huid). 

For the first four sets of values of N,, N, and NJ, we also examined the effect of variation of a by considering 
two values of r, viz. U. = 0 and 1 = 1. 

The sets (i) and (ii) give the effect of variation of N 1 when N, and NJ are kept constant. The temperature at a 
given @ation increases with the increase of N 1 for both z = 0 and r = 1. This increase is more pronounced as we 

move in the down stream direction. 
The sets (i) and (iii) give the effect of variation of N, when N 1 and N3 are kept constant. Except at 4 = 105 , at 

all other (i, stations, there is hardly any appreciable effect of N2 variation on the temperature profile for r = 0. In 
case of x = 1 the effect of the increase of N, is to increase the temperature at a given q-station. 

The sets (i) and (iv) give the effect of variation of N, when N, and N, are kept constant. There is hardly any 
change in the temperature for cc = 0 at $I = 30”, 50” and 70” when N, is varied. For CI = 0 at 4 = 105” and a = 1 at 

all d, stations, the temperature increases with the increase of NJ. 
Generally [except for the set (ii) at $I = 105’1 the temperature at a particular station q is less for r = 1 as 

compared to z = 0. This difference of temperature becomes more pronounced with the increase of N, as 

compared to the increase of N, or N,. 
All these profiles (Figs, la-d) of the micropolar fluid are compared with the corresponding profiles for the 

Newtonian fluid. (N, = N, = N, = CL = 0). The Newtonian temperature profiles have been plotted with dotted 
lines. It is clear that at any given station r~, the effect of the material parameters is to increase the temperature as 
compared to the corresponding flow of a Newtonian fluid. 

Now we proceed to examine the heat flux at the wall. The non-dimensional heat-transfer coefficient, called the 
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(i I N,*4.!5 , N,*9.0 , N,=13.5 

(ii) N,rIX5, Ng9.0, N,*13.5 

(iii) N,=4.5 t l%p40+5, Nfl3.5 

(iv) N,=4.5, Np9.0, N,a40.5 

(VI N,sO, N,-0, N,=O, asO 

[Newtonion fluid 

0 0 25 0 75 to 

(il N,=4.5 , N,=S.O , N,=l3.5 

(ii> N, ~13.5, N,s9.0 , N3=13.5 

[iii) N,=4.5 , N,=405, N,=l3.5 

(iv) N,=4.5 , Ny9.0, N,=40.5 

IV) N,s6, N,=O, N,=O, a=0 

(Newtonian fiuid) 

(i 1 N,=4.5, N,=9.0, N,=13.5 

f til N,= 13.3, N,=9.0 ( NJ 13.5 

htl N,=4.5, N,=40.5, N,= 13.5 

liV) N,=4.5, N,=9.0, N3=40.5 

(VI N,=O, N,=O, NgO, a=0 

(Newtonian fluid) 

FIG. I(a). Effect of vatiatian of N,, N,, hi3 and d on the temperature profiles at d, = 30”. (h) E&t of 
variation ofN,, N,, N, and d on the temperature profiles at 4 = 50”. (c)Effect of variation of N,, N,, N, and 
a on the temperature profiles at d, = 70”. (d) Effect of variation of N,, Nz, NJ and c1 on the temperature 

profiles at 4, = 105”. 
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41 

‘I 

31 

2’ 

I 

0 

0 
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\ 
3- 

3- 

O- 

o- 

3 

(d) 

(I) N,=45, N,=9.0, N,=l3 5 

(II) N,=l3 5, N,=9 0, NJ:13 5 

(Iii) N, ~4.5, N,=40.5, N,= 13 5 

(iV)N,=4.5, N,=9.0, N,=40 5 

0 25 05 0 75 

105” 

N,=4 5. N,=9 0, N,=,3 5 

N,-135,N,=9 0, N,=,3 5 

N,=4 5, N,=405,N,=13 5 

N,=4 5, N,=9 O,N,=40 5 

N,=O, N,=O, NJ=O. ~1 =0 

( Newtonian fluldl 

FIG. 2. Effect of variation ofh’,. X,. ‘b’, ;md u on the heat- 
transfer coefficient parameter ;:.Vu(.~)~2(2)~ ‘. 

Nusselt number, is delined as follows : 

where q is the heat flux at the wall. Therefore we can write. 

The heat-transfer coefficient parameter 1:N~(x)/2(2) ‘I2 for the same four sets of values (as for temperature 

profiles) of N,, N2 and N, have been plotted in Fig. 2. For each of these sets. heat transfer al the wall is agarn 
plotted for two different values of x. viz. r = 0 and s( = I. 

The heat-transfer coefficient is found to decrease with the increase of N, for a = 0 and z = 1. With the increax 
of N,, the heat-transfer coefficient increases for a = 0 and decreases for x = 1. When IV, is increased the heat- 
transfer coefficient decreases for x = 1 and it has hardly any change for Y = 0. 
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Generally (except for N, = 13.5, N, = 9.0, N, = 13.5 after 4 = 98”), the heat-transfer coefficient is more for c[ 
= 1 as compared to CI = 0. This difference becomes less pronounced as we move away from the stagnation point. 
The heat-transfer coefficient parameter for Newtonian fluid is plotted with the dotted lines and it is clear that the 
effect of micropolar fluid parameters is to decrease the heat-transfer coefficient. 

Comparing figures for the heat-transfer coefficient (Fig. 2) and the temperature fields (Figs. la-d), we note that 
the heat-transfer coefficient for Newtonian fluid is more and the temperature is less when compared with that for 
micropolar fluids. This can be explained as follows. The temperature f&,(x, n) at any point (x, ye) inside the 
boundary layer at a small distance n from the wall can be approximately written as 

b(X, ‘I) = ‘h(x, o)+ &(x, 0)~ = 1 - & Nu(x)q. 

The difference between the temperatures of a Newtonian fluid and a micropolar fluid at the same point inside the 
boundary layer at a distance n from the wall can be written as 

[WX, ~)]Newtonian - [0(X, ~)]ticropo~ar = { [NU(X)]micropolar - [NU(X)]Newtonian} & ? 

Table 1. Temperature distribution 0, for N, = 4.5, N, = 9.0, N, = 13.5, a = 0, Pr = 1 and E = 0.01 at 4 = 30”, 70” and 
105” for the two cases-neglecting frictional heating and including frictional heating 

4 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 

C/J = 30 4 = 70” f$ = 105” 

00 00 
(Neglecting (Including 

frictional frictional 
heating) heating) 

l.CrOOO 1.0000 
0.7801 0.7826 
0.5668 0.5696 
0.3743 0.3765 
0.2193 0.2207 
0.1114 0.1122 
0.0481 0.0484 
0.0173 0.0175 
0.0052 0.0052 
o.cKl12 0.0013 
0.0002 0.0003 
0.0000 0.0000 

00 00 00 00 
(Neglecting (Including (Neglecting (Including 
frictional frictional frictional frictional 
heating) heating) heating) heating) 

l.oolxl l.OcQO 
0.8261 0.8333 
0.6543 0.6640 
0.4003 0.5000 
0.3427 0.3509 
0.2200 0.2259 
0.1269 0.1306 
0.0639 0.0659 
0.0272 0.0281 
0.0094 0.0098 
0.0026 0.0027 
0.0006 0.0006 
o.Oc01 0.0001 
0.0000 0.0000 

1.0000 l.OcKlO 
0.9053 0.9119 
0.8092 0.8120 
0.7118 0.7192 
0.6162 0.6321 
0.5178 0.5373 
0.4007 0.4175 
0.2650 0.2759 
0.1407 0.1465 
0.0579 0.0605 
0.0181 0.0192 
0.0043 0.0047 
0.0008 0.0010 
0.0001 0.0002 
0.0000 0.0001 

Table 2. Temperature distribution 0, for NI = 4.5, N, = 9.0, N, = 13.5, a = 1, Pr = 1 and E = 0.01 at C#J = 30”, 70” and 
105” for the two cases-neglecting frictional heating and including frictional heating 

f#J = 30” 4 = 70 $J = 105” 

00 00 00 00 00 00 
rl (Neglecting (Including (Neglecting (Including (Neglecting (Including 

frictional frictional tiictional frictional frictional frictional 
heating) heating) heating) heating) heating) heating) 

0.0 1.0000 1.0000 1.0000 MOOO 1.0000 1.0000 
0.5 0.7680 0.7704 0.8170 0.8241 0.9026 0.9092 
1.0 0.5475 0.5503 0.6384 0.6480 0.8030 0.8062 
1.5 0.3548 0.3570 0.4713 0.4809 0.7013 0.7089 
2.0 0.2043 0.2057 0.3244 0.3325 0.5998 0.6154 
2.5 0.1023 0.1031 0.2052 0.2110 0.4944 0.5137 
3.0 0.0437 0.0441 0.1168 0.1204 0.3742 0.3908 
3.5 0.0157 0.0158 0.0582 0.0601 0.2429 0.2538 
4.0 0.0046 0.0047 0.0245 0.0254 0.1275 0.1332 
4.5 0.0011 0.0011 0.0085 0.0088 0.052 1 0.0546 
5.0 0.0002 0.0002 0.0023 0.0025 0.0163 0.0173 
5.5 0.0000 0.0000 0.0005 0.0005 0.0038 0.0042 
6.0 0.0001 0.0001 0.0007 0.0009 
6.5 0.0000 0.0000 0.0001 0.0002 
7.0 O.oooO O.OOQl 
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Since [Nn(.~)]t+wtonlan is greater than [~u(x)lmlcropo~ar, therefore, the temperature of a micropolar fluid is more 
than the temperature of a Newtonian fluid in view of the above relation. 

Towards the end of the present work, we have also computed the temperature distribution 0, and heat-transfer 
coefficient parameter ~Nu(.u)/2(2)“’ rncluding the frictional heating terms. The magnitude of the Eckert number 

E is taken as 0.01 and the case we considered is for N, = 4.5, N, = 9.0, N, = 13.5. These values have been 

recorded in Table I (for G( = 0) and in Table 2 (for r = I ) for temperature fields at 4 = 30’. 70 and 105’ and in 

Table 3 (for x = 0 and x = 1 I for heat-transfer coefficient. It is clear from these tables that the inclusion of 

Table 3. Heat-transfer coefficient parameter i:N~(?i);2(2 j’ ’ for !! $ = 4.5. ~1:2 = 9.0. .\ J = 13.5. 
Pr = I and E = 0.01 (for r = 0 and r = 1) for the two cases neglecting frictional heating and 

including frictional heating 

(/I 
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100 

7 = 0 r= I 

<.\Il(V) ?(?I’ 2 L\‘U(Y)~2(2) L t X1,( U)/2(1)’ z i:h’l,( \-),2(7 J’ J 
(Neglecting (Including (Neglecting (Including 

frictional frictional frictional frictional 
heating) heating) heating) heating) 

0.2305 0.2305 0.2445 0.2445 
0.2293 0.228X 0.2433 0.242X 
0.2260 0.224 I 0.2396 0.277X 
0.2204 0.2 164 0.2336 0.2297 
02124 0.2063 0.2251 0.2 I90 
0.2022 u. 1940 0.2 I40 0.2059 
0. I X94 0.1797 0.2006 0.1906 
0.1740 0.1633 0. I X36 0.1730 
0. I557 0. I 440 0.1638 ().I522 
0. I 342 0.1201 0. I 404 0.1265 
tl.lOXx O.OXXX 0.1 128 (1.093 I 

the frictional heating terms has no appreciable influence and thereby supports the assumption of negligible 
frictional heating in the present work. 

To sum up, we can therefore, state that the effect of variation of N, is more pronounced as compared to the 

variation of either Nz or N,. Generally [except for the set (ii) of values of IV,, N, and NJ, the temperature is less 
and the heat-transfer coefficient is more for c( = I as compared to r = 0. It is seen that the effect of micropolar 
tluid parameters is to increase the temperature inside the boundary layer and to decrease the heat-transfer 
coefficient as compared to Newtonian fluid. 

rlck,zowledgemrnr -Mrs. P. Subhadra Ramachandran is grateful to C.S.I.R. Government of India for the award of a research 
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COUCHE LIMITE THERMIQUE DUN FLUIDE MICROPOLAIRE 
SUR UN CYLINDRE CIRCULAIRE 

R&me---On Ctudie la couche limite stationnaire sur un cylindre circulaire dont I’axe est normal a un 
ecoulement de fluide micropolaire et incompressible. On obtient la solution de I’equation d’energie dans la 
couche limite sous la forme dun developpement en strie de la distance curviligne au point d’arrit amont. La 
surface du cylindre est maintenue g temperature constante de meme que I’ecoulement libre. La distribution 
de temperature adimansionnelle et le coefficient de transfert de chaleur sent presentis graphiquement pour 
plusieurs valeurs des paramttres. On les compare aux resultats correspondants pour les fluides Newtoniens. 
Pour les fluides micropolaires, la temperature dans la couche limite est plus grande que pour les fluides 

Newtoniens alots que le coefficient de transfert est plus faible. 



Thermal boundary layer of a micropolar fluid on a circular cylinder 

DIE THERMISCHE GRENZSCHICHT EINES MIKROPOLAREN FLUIDS 
AM KREISZYLINDER 

Zusammenfassung-Untersucht wurde die stationare thermische Grenzschichtstromung hinter einem 
Kreiszylinder, dessen Achse senkrecht in der freien Zustromung eines inkompressiblen, mikropolaren Fluids 
steht. Die Losung der Energiegleichung, angewandt auf die Grenzschicht, erhtilt man als Exponentialfunk- 
tion der Umstriimungsllnge entlang der Zylinderoberfliiche vom Staupunkt aus. Sowohl die Oberflachen- 
temperatur des Kreiszylinders als such die Temperatur auBerhalb der Grenzschicht wurden als konstant 
angenommen. Die dimensionslose Temperaturverteilung und der Warmetibergangskoefiizient wurden 
grafisch aufgetragen fur verschiedene Werte der Materialparameter. Die Ergebnisse werden verglichen mit 
entsprechenden Werten fur Newton’sche Fliissigkeiten. Es zeigt sich, daR bei mikropolaren Substanzen die 
Grenzschicht-Temperaturgrogen, der Wiirmetibergangskoefzient kleiner ist als bei Newton’schen Fltissig- 

keiten. 

MCCJIEAOBAHME HOI-PAHMqHOf-0 CnOIl MMKPOflOJISPHOH ~KMfiKOCTM 
HA HOBEPXHOCTM KPYfJIOrO UMJlMHflPA 

z%HHOTI1UHR- B pa6OTe BCCJleilyeTCRCTaUHOHapHbIii TenJIOO6MeH B nOrpaH‘,YHOM cnoe Ha KpyrnO~ 

UWU4Hnpe, OCb KOTOpOrO flepneHLlRKyJl~pHa Ha6eraromeMy CBO60ilHOMy nOTOKy HeCXGiMaeMOfi 

hmKponompnoi4 WIJIKOCTR. Peueme ypaBHetfm weprm nonyqeno B sme cTenennbIx psnoe no 

KOOp~~HaTe,~3MepeHHOiinOnOBepXHOCTHOT~060BO~Kp~TMYeCKO~TOYKHU~~rtH~pa.~eMnepaTypbI 

Kpyrnoro uwnennpa w na6eraromero norokacyuraiorcs nocTomnbnm. rpaI$WIeCKM npencTaBneH0 

pacnpenenenue 6e3pa3MepHofi rervtneparypbt w ko3@&iuseura rennoo6Meua nm pa3nwiHblx 

snarewik napaMeTpoe cpenbr. FibIn npoBeneH0 conocTaBneme c cooTBeTcTBymm-iMu nannbmui 

jW-lR HblOTOHOBCKWX XGiLlKOCTefi. Y MHKpOnOnSlpHblX WiflKOCTefi,nO CpaBHeHHlO C HbfOTOHOBCKHMH, 

TehfnepaTypa BHYTPH norpaaasnoro cnos 6onbme, a K03@&unienr rennoo6Meua Menbme. 
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